希尔伯特二十三个问题当中的第一问,连续统基数问题。
连续统问题,即“在可数集基数和实数集基数之间没有别的基数”的问题。
所谓“基数”,便是指集合的“绝对测度”。一个集合里面有一个元素,那么这个集合的基数性就是一,有两个元素,基数性就是二。以此类推。
而“所有整数”“所有自然数”这种无限可数集合,其基数性,就记做“阿列夫零”——神州称之为“道元零数”,最小的无限整数。
神州的古人曾经认为,数字的总数、无限的大就是道的数字。
阿列夫零加一还是阿列夫零。阿列夫零加阿列夫零还是阿列夫零。阿列夫零乘以阿列夫零还是阿列夫零。
无限大、正无穷。普通的操作方式对于这个数字完全没有意义。
那么,世界上还有比这个无限大的数字更大的数码?
实际上是有的。
那就是“幂集”的基数。
如果一个集合有“1”这一个元素,那么它的幂集就有两个——“1”还有空集。
如果一个集合有“1,2”两个元素,那么它就有四个幂集——空集,集合{1},集合{2},集合{1,2}。
以此类推,当一个集合有三个元素,那么它就有八个幂集。当集合元素增加道了四个的时候,幂集就增加到了十六个。
一个集合的幂集,永远比这个集合的元素要多。如果一个集合有N个元素,那么它就有2的N次方个幂集。
无限可数集合的幂集,二的阿列夫零次方,就是人类发现的第二个无限大的数字——贝司一。
而这个“beth1”除了是整数集的幂集之外,还是所有实数集合的基数。
而连续统问题,也可以概括为“阿列夫零和贝司一之间,究竟存不存在另一个基数?”。
Loading...
未加载完,尝试【刷新】or【关闭小说模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.gaysay.com
(>人<;)